Compact hyperbolic tetrahedra with non-obtuse dihedral angles

نویسنده

  • Roland K. W. Roeder
چکیده

Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of R [9]. If C has five or more faces, Andreev’s Theorem states that the corresponding space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andreev did not consider tetrahedra, the only polyhedra having fewer than five faces, by demonstrating that the space of dihedral angles of compact hyperbolic tetrahedra, after restricting to non-obtuse angles, is non-convex. Our proof provides a simple example of the “method of continuity”, the technique used in classification theorems on polyhedra by Alexandrow [4], Andreev [5], and Rivin-Hodgson [19]. 2000 Mathematics Subject Classification. 52B10, 52A55, 51M09.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

non-obtuse dihedral angles

Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of R [9]. If C has five or more faces, Andreev’s Theorem states that the corresponding space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andre...

متن کامل

Université De Provence

In 1970, E. M. Andreev published a classification of all three dimensional compact hyperbolic polyhedra having non-obtuse dihedral angles [3]. Given a combinatorial description of a polyhedron, C, Andreev’s Theorem provides five classes of linear inequalities, depending on C, for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron real...

متن کامل

Constructing Hyperbolic Polyhedra Using Newton's Method

We demonstrate how to construct three-dimensional compact hyperbolic polyhedra using Newton’s Method. Under the restriction that the dihedral angles are non-obtuse, Andreev’s Theorem [5, 6] provides as necessary and sufficient conditions five classes of linear inequalities for the dihedral angles of a compact hyperbolic polyhedron realizing a given combinatorial structure C. Andreev’s Theorem a...

متن کامل

A Volume Formula for Generalized Hyperbolic Tetrahedra∗

A generalized hyperbolic tetrahedra is a polyhedron (possibly noncompact) with finite volume in hyperbolic space, obtained from a tetrahedron by the polar truncation at the vertices lying outside the space. In this paper it is proved that a volume formula for ordinary hyperbolic tetrahedra devised by J. Murakami and M. Yano can be applied to such ones. There are two key tools for the proof; one...

متن کامل

Gauss Images of Hyperbolic Cusps with Convex Polyhedral Boundary François Fillastre and Ivan Izmestiev

We prove that a 3–dimensional hyperbolic cusp with convex polyhedral boundary is uniquely determined by its Gauss image. Furthermore, any spherical metric on the torus with cone singularities of negative curvature and all closed contractible geodesics of length greater than 2π is the metric of the Gauss image of some convex polyhedral cusp. This result is an analog of the Rivin-Hodgson theorem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006